Áú8Ψһ¹ÙÍø

²úÆ·ÖÐÐÄ

ÁªÏµÁú8Ψһ¹ÙÍø

+86-010-82156767

ÏúÊÛרÓãº

+86-010-62983737 

+86-15522507305 

+86-15522507319 

+86-15522507326

µØµã£º±±¾©Êк£µíÇøÎ÷С¿Ú·66ºÅÖйش嶫Éý¿Æ¼¼Ô°C-1Â¥Èý²ã

undefined
+
  • undefined

t-Boc Amine PEG Amine, HCl Salt

²úÆ·´úºÅ£º

TBOC-PEG-NH2HCl

²úÆ·´¿¶È£º

¡Ý 95%

°ü×°¹æ¸ñ£º

1g, 10g, 100gµÈ£¨ÌØÊâ°ü×°ÐèÊÕÈ¡·Ö×°Óöȣ©

·Ö×ÓÁ¿£º

2000 Da,3500 Da, 5000 Da, 7500 DaµÈ

²úÆ·×Éѯ£º

¿ÆÑпͻ§Ð¡ÅúÁ¿Ò»¼ü²É¹ºµØµã£¨Ð¡ÓÚ5¿Ë£©

Á¢¼´Ïµ¥
  • ²úÆ·ÃèÊö
  • ²Î¿¼ÎÄÏ×
  • ¡¡¡¡Áú8Ψһ¹ÙÍø¿Æ¼¼Éú²úÊå¶¡Ñõôʰ±»ù¾ÛÒÒ¶þ´¼°·ÑÎËáÑβúÆ·Öк¬ÓÐÓÉtBoc»ùÍű£»¤µÄ°·¼°°·µÄÑÎËáÑΣ¬Í¨³£ÓÃ×÷Á½ÖÖ²î±ð»¯Ñ§ÎïÖʵĽ»Áª¼Á»ò¼ä¸ôÎï¡£´ËÒ칦ЧPEGÑÜÉúÎïÖеÄPEG²¿·Ö¿ÉÌṩˮÈÜÐÔ¡¢ÉúÎïÏàÈÝÐÔ¼°ÈáÐÔ¡£´Ë²úƷרÃÅÓ¦ÓÃÓÚ¿¹ÌåżÁªÒ©Îï(ADC¡¯s)µÄ¿ª·¢¡£

    ²úÆ·±àÂë

    ²úÆ·´úºÅ

    A5042

    TBOCNH-PEG2000-NH2HCl

    A5043

    TBOCNH-PEG3500-NH2HCl

    A5040

    TBOCNH-PEG5000-NH2HCl

    A5044

    TBOCNH-PEG7500-NH2HCl

    ¡¡¡¡Áú8Ψһ¹ÙÍø¿Æ¼¼ÌṩTBOC-PEG-NH2HCl·Ö×ÓÁ¿2000 Da,3500 Da, 5000 Da, 7500 DaµÄ²úÆ·1¿ËºÍ10¿Ë°ü×°¡£

    ¡¡¡¡Áú8Ψһ¹ÙÍø¿Æ¼¼Ìṩ·ÖװЧÀÍ£¬ÐèÒªÊÕÈ¡·Ö×°ÓöÈ£¬Èç¹ûÄúÐèÒª·ÖװΪÆäËû¹æ¸ñÇëÓëÎÒÃÇÁªÏµ¡£

    ¡¡¡¡Áú8Ψһ¹ÙÍø¿Æ¼¼Í¬Ê±ÌṩÆäËû·Ö×ÓÁ¿µÄTBOC-PEG-NH2HClÑÜÉúÎï²úÆ·£¬ÈçÄãÐèÒªÇëÓëÎÒ˾sales@jenkem.comÁªÏµ¡£

    ¡¡¡¡Áú8Ψһ¹ÙÍø¿Æ¼¼Ìṩ´óÅúÁ¿Éú²ú²úÆ·¼°GMP¼¶±ð²úÆ·£¬ÈçÐ豨¼ÛÇëÓëÎÒÃÇÁªÏµ¡£

     

  • ¡¡¡¡References:

    ¡¡¡¡1. Ai, F., et al., An upconversion nanoplatform with extracellular pH-driven tumor-targeting ability for improved photodynamic therapy, Nanoscale, 2018, 10(9), pp.4432-4441.

    ¡¡¡¡2. Huo, M., et al., Tumor-targeted delivery of sunitinib base enhances vaccine therapy for advanced melanoma by remodeling the tumor microenvironment, Journal of Controlled Release, 2017, V. 245, P. 81-94.

    ¡¡¡¡3. Gajbhiye, K.R., et al., Ascorbic acid tethered polymeric nanoparticles enable efficient brain delivery of galantamine: An in vitro-in vivo study, Scientific Reports, 2017, 7: 11086.

    ¡¡¡¡4. Li, Y., et al., A graphene quantum dot (GQD) nanosystem with redox-triggered cleavable PEG shell facilitating selective activation of the photosensitiser for photodynamic therapy, RSC Adv., 2016, 6, 6516-6522.

    ¡¡¡¡5. Zhang, X., et al., Multimodal Upconversion Nanoplatform with a Mitochondria-Targeted Property for Improved Photodynamic Therapy of Cancer Cells. Inorganic chemistry, 2016, 55(8):3872-80.

    ¡¡¡¡6. Zhao, Y., et al., Nanoparticle delivery of CDDO-Me remodels the tumor microenvironment and enhances vaccine therapy for melanoma, Biomaterials, 2015, V. 68, P. 54-66.

    ¡¡¡¡7. Li, H., et al., Dual MMP7-Proximity-Activated and Folate Receptor-Targeted Nanoparticles for siRNA Delivery, Biomacromolecules, 2015, 16 (1), p: 192–201.

    ¡¡¡¡8. Liu, J., et al., Integrin-targeted pH-responsive micelles for enhanced efficiency of anticancer treatment in vitro and in vivo, Nanoscale, 2015, 7, 4451-4460.

    ¡¡¡¡9. Baker, D.W., et al., Development of optical probes for in vivo imaging of polarized macrophages during foreign body reactions. Acta Biomaterialia, 2014, 10(7): p. 2945-2955.

    ¡¡¡¡10. Hsu, H.-J., et al., Poly(ethylene glycol) Corona Chain Length Controls End-Group-Dependent Cell Interactions of Dendron Micelles, Macromolecules, 2014, 47 (19), pp 6911–6918.

    ¡¡¡¡11. Miao, L., et al., Nanoparticles with Precise Ratiometric Co-Loading and Co-Delivery of Gemcitabine Monophosphate and Cisplatin for Treatment of Bladder Cancer, Adv. Funct. Mater., 2014, 24: 6601–6611.

    ¡¡¡¡12. Guo, S., et al., Co-delivery of cisplatin and rapamycin for enhanced anticancer therapy through synergistic effects and microenvironment modulation. ACS nano, 2014, 8(5):4996-5009.

    ¡¡¡¡13. Zhou, J., et al., In vivo evaluation of medical device-associated inflammation using a macrophage-specific positron emission tomography (PET) imaging probe, Bioorganic & Medicinal Chemistry Letters, 2013, 23(7), p: 2044-2047.

    ¡¡¡¡14. Baker, D.W., The Pivotal Role Of Fibrocytes On Foreign Body Reactions, UTA, 2013.

    ¡¡¡¡15. Li, D., et al., A novel chlorin–PEG–folate conjugate with higher water solubility, lower cytotoxicity, better tumor targeting and photodynamic activity, Journal of Photochemistry and Photobiology B: Biology, 2013, 127, 5, p. 28-37.

    ¡¡¡¡16. Cao, P., et al., Improving Lanthanide Nanocrystal Colloidal Stability in Competitive Aqueous Buffer Solutions using Multivalent PEG-Phosphonate Ligands, Langmuir, 2012, 28(35), pp 12861–12870.

           17. Han, Y., et al., Effective oral delivery of Exenatide-Zn2+ complex through distal ileum-targeted double layers nanocarriers modified with deoxycholic acid and glycocholic acid in diabetes therapy, Biomaterials, 2021, V. 275.

²úƷѯ¼Û

ÍøÕ¾µØÍ¼