Áú8Ψһ¹ÙÍø

²úÆ·ÖÐÐÄ

ÁªÏµÁú8Ψһ¹ÙÍø

+86-010-82156767

ÏúÊÛרÓãº

+86-010-62983737 

+86-15522507305 

+86-15522507319 

+86-15522507326

µØµã£º±±¾©Êк£µíÇøÎ÷С¿Ú·66ºÅÖйش嶫Éý¿Æ¼¼Ô°C-1Â¥Èý²ã

undefined
+
  • undefined

PEG (Thiol)2

²úÆ·´úºÅ£º

HS-PEG-SH

²úÆ·´¿¶È£º

¡Ý 95%

°ü×°¹æ¸ñ£º

1g, 10g, 100gµÈ£¨ÌØÊâ°ü×°ÐèÊÕÈ¡·Ö×°Óöȣ©

·Ö×ÓÁ¿£º

2000Da,3500 Da, 5000 DaµÈ

²úÆ·×Éѯ£º

¿ÆÑпͻ§Ð¡ÅúÁ¿Ò»¼ü²É¹ºµØµã£¨Ð¡ÓÚ5¿Ë£©

Á¢¼´Ïµ¥
  • ²úÆ·ÃèÊö
  • ²Î¿¼ÎÄÏ×
  • ¡¡¡¡Áú8Ψһ¹ÙÍø¿Æ¼¼Éú²úµÄ¸ßÆ·ÖÊË«¶ËÛÏ»ù¾ÛÒÒ¶þ´¼²úÆ·¿ÉÒÔÔÚκͷ´Ó¦Ìõ¼þÏÂÓÐÑ¡ÔñÐÔµØÓë°ëë×°±Ëá²àÁ´ÉϵÄÁò»ùÍű¬·¢·´Ó¦µÄPEG¡£Áú8Ψһ¹ÙÍø¿Æ¼¼µÄͬ˫¹¦Ð§PEGÑÜÉúÎï¿É×÷Ϊ½»Áª¼Á¹ã·ºÓ¦ÓÃÓÚÂÑ°×ÖʺÍëĵÄPEGÐÞÊΡ¢ÄÉÃ׿ÅÁ£¼°Íâò¸ÄÐÔÖС£ÓëʹÓÃÏßÐÔPEGÐÞÊεÄ΢Á£Ïà±È£¬Óëͬ˫¹¦Ð§PEG׺ºÏµÄ¿ÅÁ £¿É°ü¹Ü¸ü¸ßµÄÔØÒ©Á¿¡£

    ²úÆ·±àÂë

    ²úÆ·´úºÅ

    A4063

    HS-PEG2000-SH

    A4001

    HS-PEG3500-SH

    A4075

    HS-PEG5000-SH

    A4126

    HS-PEG7500-SH

    ¡¡¡¡Áú8Ψһ¹ÙÍø¿Æ¼¼Ìṩ·ÖװЧÀÍ£¬ÐèÒªÊÕÈ¡·Ö×°ÓöÈ£¬Èç¹ûÄúÐèÒª·ÖװΪÆäËû¹æ¸ñÇëÓëÎÒÃÇÁªÏµ¡£

    ¡¡¡¡Áú8Ψһ¹ÙÍø¿Æ¼¼Í¬Ê±ÌṩÆäËû·Ö×ÓÁ¿µÄHS-PEG-SHÑÜÉúÎï²úÆ·£¬ÈçÄãÐèÒªÇëÓëÎÒ˾sales@jenkem.comÁªÏµ¡£

    ¡¡¡¡Áú8Ψһ¹ÙÍø¿Æ¼¼Ìṩ´óÅúÁ¿Éú²ú²úÆ·¼°GMP¼¶±ð²úÆ·£¬ÈçÐ豨¼ÛÇëÓëÎÒÃÇÁªÏµ¡£

     

     

  • References:

    1. Truong, N.F., et al., Microporous annealed particle hydrogel stiffness, void space size, and adhesion properties impact cell proliferation, cell spreading, and gene transfer, Acta Biomaterialia, 2019.
    2. Zhang, J., et al, Insight into the role of grafting density in the self-assembly of acrylic acid-grafted-collagen, International Journal of Biological Macromolecules, 2019.
    3. Bae, S.W., et al., Dynamic, Bioresponsive Hydrogels via Changes in DNA Aptamer Conformation, Macromolecular bioscience, 2019, 19(2):1800353.
    4. Wehrman, M.D., et al., Rheological properties and structure of step©\and chain©\growth gels concentrated above the overlap concentration. AIChE Journal, 2017.
    5. Kozai, T.D.Y, et al., Two-photon imaging of chronically implanted neural electrodes: Sealing methods and new insights, Journal of Neuroscience Methods, 2016, 258, P. 46-55.
    6. Sridhar, B. V., et al., Development of a Cellularly Degradable PEG Hydrogel to Promote Articular Cartilage Extracellular Matrix Deposition. Advanced Healthcare Materials, 2015, 4: 702–713.
    7. Sridhar, B.V., et al., Covalently tethered TGF-β1 with encapsulated chondrocytes in a PEG hydrogel system enhances extracellular matrix production. Journal of Biomedical Materials Research Part A, 2014.
    8. Liu, S., et al., Effects of the proportion of two different cross-linkers on the material and biological properties of enzymatically degradable PEG hydrogels, Polymer Degradation and Stability, 2020, V. 172.
    9. He, Y., et al, Thiol-ene-mediated degradable POSS-PEG/PEG hybrid hydrogels as potential cell scaffolds in tissue engineering, Polymer Degradation and Stability, 2023, V. 211.

²úƷѯ¼Û

ÍøÕ¾µØͼ